Electronic Realizations of a Maxwell's Demon

Entropy & Maxwell's demon

Electronic Szilard's engine

Autonomous Maxwell's demon

Entropy

State *s* probability P_s Entropy $S_s = -k_B \sum_s P_s \ln P_s$ quantifies disorder

Heat bath macroscopic & at equilibrium

- Characterize with temperature T : $\frac{dS_b}{dQ} = \frac{1}{T}$
- $\Delta S_b = Q/T$

Second law: $\Delta S = \Delta S_s + \Delta S_b \ge 0$ Every process is dissipative

Maxwell's demon

Heat flow: **cold** \rightarrow **hot?**

System more **ordered**?

Second law violated?

Szilard's engine

Energy for free?

Landauer's principle

Erasure of information changes entropy: $\Delta S_s = 0 - k_B \left(\frac{1}{2} \log(2) + \frac{1}{2} \log(2) \right) = -k_B \log(2)$ Second law: $\Delta S_h \geq -\Delta S_s$ $W = Q \ge k_B T \log(2)$

'Forgetting' spends energy

Experiments on Maxwell's demon

S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, *Nature Phys.* **6**, 988 (2010)

Also

É. Roldán *et al.*, *Nature Phys.* **10**, 457 (2014)

Photonic MD

Mihai D. Vidrighin *et al.*, Phys. Rev. Lett. **116**, 050401 (2016)

Quantum MD

N. Cottet et al., PNAS 114, 7561 (2017)

Tests on Landauer's principle

Y. Jun et al., PRL 113, 190601 (2014)

Entropy & Maxwell's demon

Electronic Szilard's engine

Autonomous Maxwell's demon

Heat in electronics

Metal block of $(100 \text{ nm})^3$: ~10¹⁰ Conduction electrons

Electron-electron interaction: T_{el}

Electron-phonon interaction:

$$T_{el} \to T_{ph}$$

Heat in electronics

Metal block of $(100 \text{ nm})^3$: ~10¹⁰ Conduction electrons

Electron-electron interaction: T_{el}

Electron-phonon interaction:

$$T_{el} \to T_{ph}$$

Electron tunneling

Tunneling through tunnel barrier

 $Q=\mu_L - \mu_R$

Tunneling rate (for metallic junction): $\Gamma = \frac{1}{e^2 R} \int dE f(E - \mu_L) (1 - f(E - \mu_R))$ Tunneling resistance R

Single electron box

n electrons on a metallic island $H = E_C (n - n_g)^2$ $E_C = \frac{e^2}{2C_{\Sigma}} \sim 1 \text{ K}$ $n_g = V_g (C_g / e)$

When $E_C \gg k_B T$: Two-level system (n = 1, n = 0):

• Changes by tunneling

•
$$H(1) - H(0) = 2E_C(n_g - \frac{1}{2})$$

Single electron box / Transistor

n electrons on a metallic island $H = E_C (n - n_g)^2$ $E_C = \frac{e^2}{2C_{\Sigma}} \sim 1 \text{ K}$ $n_g = V_g (C_g / e)$

When $E_C \gg k_B T$: Two-level system (n = 1, n = 0):

• Changes by tunneling

•
$$H(1) - H(0) = 2E_C(n_g - \frac{1}{2})$$

Electric current gateable Sensitive to nearby charge

 \rightarrow Charge detection

Driving a single electron

O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, PRL 109, 180601 (2012)

Driving a single electron

O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, PRL 109, 180601 (2012)

Driving a single electron

Fluctuation relations

$$\left\langle e^{-W/k_BT}\right\rangle = e^{-\Delta F/k_BT}$$

C. Jarzynski, PRL 78, 2690 (1997)

$$\frac{P(W)}{P(-W)} = e^{(W - \Delta F)/k_B T}$$

G. E. Crooks, PRE 60, 2721 (1999)

><u>100000</u> runs

O.-P. Saira, Y. Yoon, T. Tanttu, M. Möttönen, D. V. Averin, and J. P. Pekola, PRL 109, 180601 (2012)

Szilard engine with a single electron

JVK, V. F. Maisi, J. P. Pekola & D. V. Averin, PNAS (2014)

Szilard engine with a single electron

JVK, V. F. Maisi, J. P. Pekola & D. V. Averin, PNAS (2014)

Szilard engine with a single electron

Experimental realization

JVK, V. F. Maisi, J. P. Pekola & D. V. Averin, PNAS (2014)

JVK, V. F. Maisi, J. P. Pekola & D. V. Averin, PNAS (2014)

Distribution of work

Distribution of work

Mutual information

State: *s* Measurement outcome: *m* Usually m = s, but sometimes: $m \neq s \rightarrow \text{error}!$

Mutual information:
$$I = \log(P_{s|m}) - \log(P_s)$$

 $P_{s|m=s} = 1$: $I = -\log(P_s)$
 $P_{s|m=s} = P_s$: $I = 0$

Fluctuation relation:

$$\langle e^{-(W - \Delta F)/k_BT - I} \rangle = 1$$

 $\langle W \rangle \ge \Delta F - k_BT \langle I \rangle$
T. Sagawa & M. Ueda, PRL **104**, 090602 (2010)

Errors in Szilard engine

Two alternatives for *I* :

Experimental control of ε : average detector signal

1.5 0.1 P(W/ k^B^B) 0.5 $\varepsilon = 0.13$ 0.0 -2 2 0 4 $W/k_{\rm B}T$

Work distribution

Entropy & Maxwell's demon

Electronic Szilard's engine

Autonomous Maxwell's demon

Autonomous Maxwell's demon

Two coupled single electron transistors

$$H = E_{C1}(n - n_g)^2 + E_{C2}(N - N_g)^2 + 2J(n - n_g)(N - N_g)$$

Operate at $n_g = N_g = \frac{1}{2}$:
$$H(0, 1) = H(1, 0) = -\frac{J}{2}$$

$$H(0, 0) = H(1, 1) = +\frac{J}{2}$$

Chemical potential $\mu = \pm J$

Operation Cycle

Allow transitions: eV > 0

Error-free detection: $k_B T \ll J$

Implementation

JVK, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, PRL 115, 260602 (2015)

Implementation Gate Junction Junction **System** Capacitive coupling Demon Junction Junction

Gate JVK, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, PRL **115,** 260602 (2015)

Implementation

Gate JVK, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, PRL **115,** 260602 (2015)

Implementation

SN contacts:

Measure changes in T:
$$\frac{dQ}{dt} \propto \Delta T$$

Thermometry: M. Nahum and John M. Martinis Appl. Phys. Lett. 63, 3075 (1993)

JVK, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, PRL 115, 260602 (2015)

Performance: demon inactive ($N_g = 0$)

Single-sided cooling of L / R at the expense of heating the other end

J. P. Pekola, JVK, D. V. Averin, PRB **89**, 081309 (2014) A. V. Feshchenko, JVK, J. P. Pekola, PRB **90**, 201407(R) (2014)

No effect on the demon

Performance: demon active ($N_g = 1/2$)

System cooling down, heat in the demon

JVK, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, PRL 115, 260602 (2015)

Conclusions & outlook

- One bit of information converted to energy
- Role of mutual information demonstrated

Gate modulation

Second law for Maxwell's demon

J. M. Horowitz, M. Esposito, PRX 4, 031015 (2014)

$$\frac{dS_s}{dt} + \frac{dQ_s}{dt}/T \ge 0 \qquad \frac{dS_d}{dt} + \frac{dQ_d}{dt}/T \ge 0$$
System
Closed loop: $\frac{dS_d}{dt} = -\frac{dS_s}{dt} \equiv \frac{dI}{dt}$, 'information flow'
Cooling and heating bound by $\frac{dI}{dt}$:
$$-\frac{dQ_s}{dt} \le \frac{dI}{dt}T \quad \frac{dQ_d}{dt} \ge \frac{dI}{dt}T$$

 dQ_{s}

Information Flow

Fast demon: $P(n,N) = \frac{1}{Z}e^{-\frac{E(n,N)}{k_BT_d}}$

Detailed balance:

$$\frac{dI}{dt} = \frac{dQ_d}{dt} \frac{1}{T_d}$$

Information flow can be measured