Optimal quantum interference thermoelectric heat engine with edge states

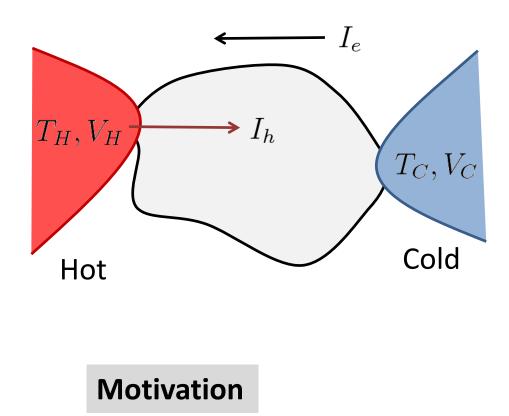
Peter Samuelsson, Sara Kheradsoud, Björn Sothmann

Mesoscopic Transport and Quantum Coherence Aalto University, August 2017

P. Samuelsson, S. Kheradsoud, B. Sothmann, Phys. Rev. Lett. 118, 256801 (2017).

Mesoscopic thermoelectric heat engine

Steady state heat to electrical work conversion in mesoscopic conductors



Performance

Power

$$P = I_e V$$

Electrical current I_e flowing against applied bias

$$V = V_H - V_C > 0$$

Efficiency

$$\eta = \frac{P}{I_h} \le \eta_C$$

bounded by Carnot η_C .

- Proof-of-principle for nanoscale waste heat recovery.
- Role of coherence in heat engine performance.
- Investigate fundamentals of energy transport.

Optimal performance

Two-terminal heat engine, linear response

Transmission

Energy dependence of $\mathcal{T}(arepsilon)$

governs thermoelectric properties

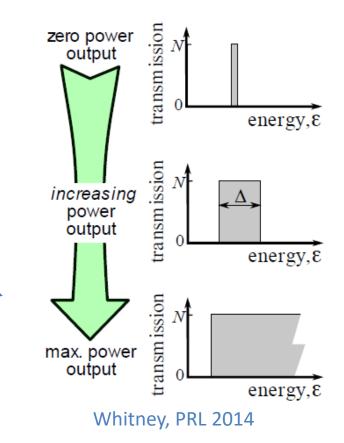
Maximizing output power

Step function in energy

Q1: Can a purely interference based TE-heat engine be optimal?

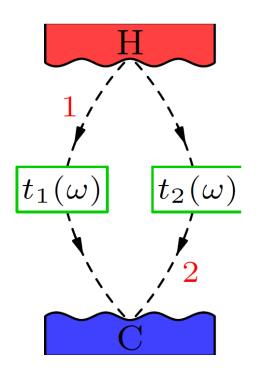
Optimization

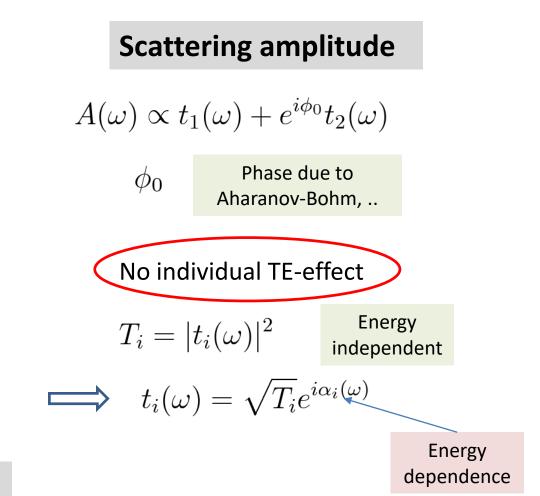
Transmission giving optimal η for given P .



Double slit interferometer

Generic interferometer





Scattering probability

 $|A(\omega)|^2 \propto T_1 + T_2 + 2\sqrt{T_1T_2}\cos[\alpha_1(\omega) - \alpha_2(\omega) - \phi_0]$

Double slit interferometer

$$|A(\omega)|^2 \propto T_1 + T_2 + 2\sqrt{T_1T_2}\cos[\alpha_1(\omega) - \alpha_2(\omega) - \phi_0]$$

Conditions for transmission step

- Symmetric interferometer, $T_1 = T_2$.
- Sharp jump $\pi \to 0$ for $\alpha_1(\omega) \alpha_2(\omega) \phi_0$ at $\omega = \omega_0$.

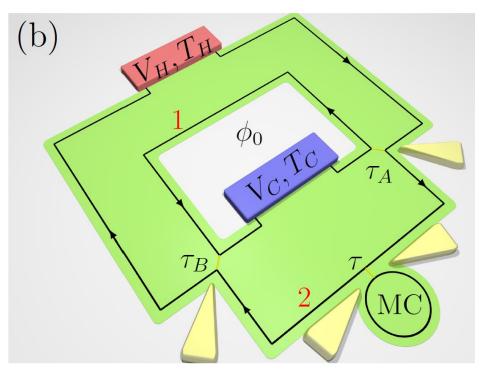
$$\mathcal{T}(\omega) = \theta(\omega - \omega_0)$$
 Step function transmission

Q1: Can a purely interference based TE-heat engine be optimal? A1: Yes

Q2: Is there a possible experimental realization of such optimal engine?

Edge state Mach-Zehnder with capacitor

Extending Hofer, Sothmann, PRB 2015



Properties

- Quantum point contacts au_A, au_B
- Mesoscopic capacitor (MC) au, Δ, ω_0 Fève et al, Science 2007

Contacts $T_C, T_H \quad V_C, V_H$

Interferometer

 ϕ_0

Total transmission amplitude (equal arm lengths)

$$t(\omega) = \sqrt{\tau_A \tau_B} - \sqrt{(1 - \tau_A)(1 - \tau_B)} e^{i[\alpha(\omega) + \phi_0]}$$

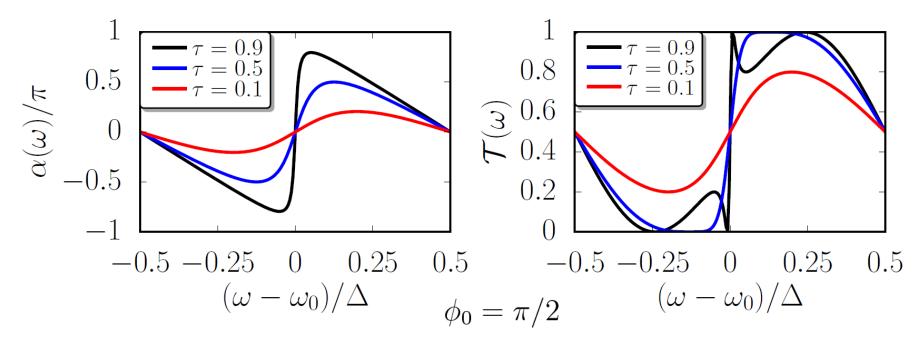
$$\alpha(\omega) = 2 \arctan \frac{\sqrt{\tau} \sin \left(2\pi \frac{\omega - \omega_0}{\Delta}\right)}{1 - \sqrt{\tau} \cos \left(2\pi \frac{\omega - \omega_0}{\Delta}\right)}$$

Scattering phase at MC

Transmission properties

Semitransparent splitters $\tau_A = \tau_B = 1/2$ (symmetry condition),

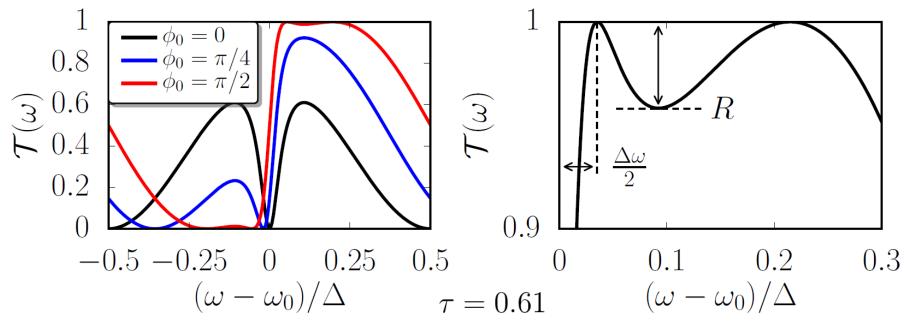
$$\mathcal{T}(\omega) = \frac{\left[\sin\left(\frac{\phi_0}{2}\right) - \sqrt{\tau}\sin\left(\frac{\phi_0}{2} - 2\pi\frac{\omega - \omega_0}{\Delta}\right)\right]^2}{1 - 2\sqrt{\tau}\cos\left(2\pi\frac{\omega - \omega_0}{\Delta}\right) + \tau}.$$



Effective phase shift

$$\Delta\phi \equiv \max_{\omega} \{\alpha(\omega)\} - \min_{\omega} \{\alpha(\omega)\} \implies \Delta\phi = \pi \text{ for } \tau = 1/2$$

Transmission properties



Phase dependent symmetries

$$\phi_0 = \pi/2 \qquad \mathcal{T}(\omega - \omega_0) = 1 - \mathcal{T}(-[\omega - \omega_0])$$

$$\phi_0 = 0 \qquad \mathcal{T}(\omega - \omega_0) = \mathcal{T}(-[\omega - \omega_0])$$

- Filter analogy, au > 0.5 , $\phi_0 = \pi/2$

$$\begin{split} R &= 1/2 - \sqrt{\tau(1-\tau)} \quad \text{Ripple} \\ \Delta \omega &= \frac{\Delta}{\pi} \left[\arcsin\left(\frac{1}{\sqrt{2\tau}}\right) - \frac{\pi}{4} \right] \quad \text{Transition width, roll-off} \end{split}$$

Thermoelectric scattering theory

Linear response theory (non-interacting), charge and heat currents

Butcher, 1990

$$\left(\begin{array}{c}I_e\\I_h\end{array}\right) = \left(\begin{array}{cc}\mathcal{L}_{eV} & \mathcal{L}_{eT}\\\mathcal{L}_{hV} & \mathcal{L}_{hT}\end{array}\right) \left(\begin{array}{c}F_V\\F_T\end{array}\right)$$

Thermodynamic forces

$$F_V = eV/k_BT \quad F_T = \Delta T/(k_BT)^2$$

where
$$V = V_H - V_C$$
, $\Delta T = T_H - T_C$

Onsager matrix

$$\begin{pmatrix} \mathcal{L}_{eV} & \mathcal{L}_{eT} \\ \mathcal{L}_{hV} & \mathcal{L}_{hT} \end{pmatrix} = \frac{1}{h} \int d\omega \ \mathcal{T}(\omega)\xi(\omega) \begin{pmatrix} e & e\omega \\ \omega & \omega^2 \end{pmatrix}$$
where $\xi(\omega) = \left(2\cosh\frac{\omega}{2}\right)^{-2}$

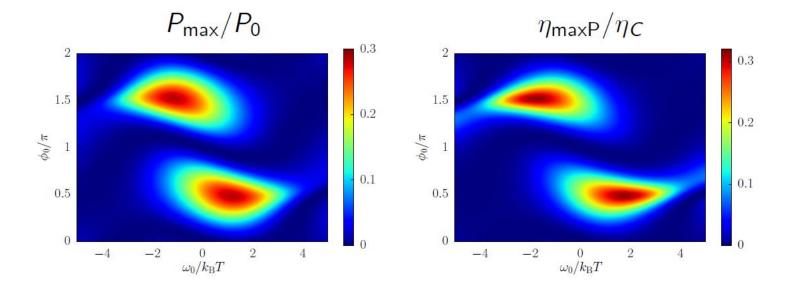
Power and efficiency

Maximum power generated, with respect to voltage

$$P_{\max} = \frac{k_B T}{4e} \frac{(\mathcal{L}_{eT})^2}{\mathcal{L}_{eV}} (F_T)^2.$$

Efficiency at maximum power

$$\eta_{\text{maxP}} = \frac{P_{\text{max}}}{I_h} = \frac{\eta_C}{2e} \frac{(\mathcal{L}_{eT})^2}{2\mathcal{L}_{eV}\mathcal{L}_{hT} - \mathcal{L}_{eT}} \qquad P_0 = \frac{(k_B \Delta T)^2}{h}$$



Close-to-optimal performance

Optimal, single mode performance (step function transmission)

$$\begin{aligned} \mathcal{T}(\omega) &= \theta(\omega - \omega_0) \implies \\ P_{\max} &= 0.32 \ \frac{(k_B \Delta T)^2}{h} \quad \text{for} \quad \omega_0 = 1.16 k_B T \\ \eta_{\max} &= 0.35 \eta_C \end{aligned}$$

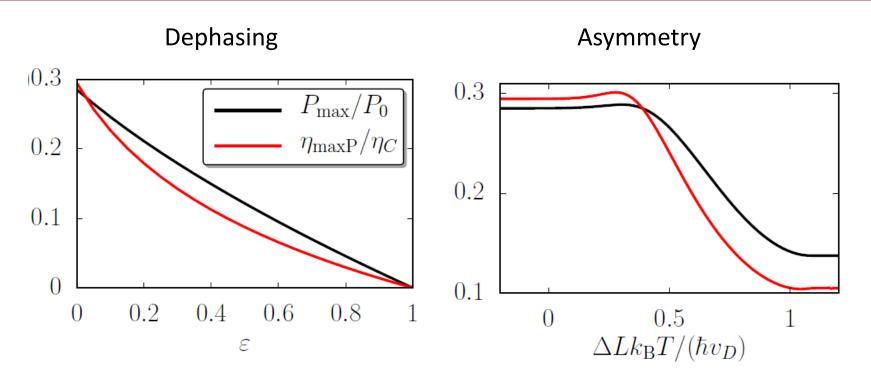
Numerical optimization

Optimizing $\mathcal{T}(\omega)$ over $0 \leq \tau \leq 1, 0 \leq \phi_0 \leq \pi, \omega_0, \Delta$

- Parameters $\tau = 0.61, \phi_0 = 0.52\pi, \omega_0 = 1.17k_BT, \Delta = 24.2k_BT$
- Values

$$P_{\max} = 0.285 \frac{(k_B \Delta T)^2}{h} \qquad \eta_{\max P} = 0.29 \eta_C$$
90% - of optimal - 83%

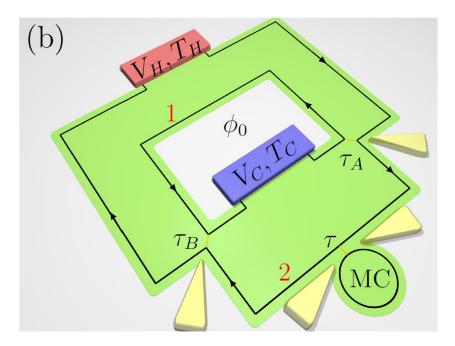
Show-stoppers?



- Survives for moderate dephasing strength $0 \le \epsilon \le 1$
- Zero for complete dephasing.
- Not very sensitive to arm length asymmetry $\Delta L = L_1 L_2$

Conclusions

- Interference-only thermoelectrics potentially optimal
- Close-to-optimal performance in edge-state setup
- Not very sensitive to dephasing and asymmetry



P. Samuelsson, S. Kheradsoud, B. Sothmann, Phys. Rev. Lett. 118, 256801 (2017).